Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
2.
Nat Genet ; 54(10): 1534-1543, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36195757

RESUMO

Sleep apnea is a common disorder that represents a global public health burden. KCNK3 encodes TASK-1, a K+ channel implicated in the control of breathing, but its link with sleep apnea remains poorly understood. Here we describe a new developmental disorder with associated sleep apnea (developmental delay with sleep apnea, or DDSA) caused by rare de novo gain-of-function mutations in KCNK3. The mutations cluster around the 'X-gate', a gating motif that controls channel opening, and produce overactive channels that no longer respond to inhibition by G-protein-coupled receptor pathways. However, despite their defective X-gating, these mutant channels can still be inhibited by a range of known TASK channel inhibitors. These results not only highlight an important new role for TASK-1 K+ channels and their link with sleep apnea but also identify possible therapeutic strategies.


Assuntos
Mutação com Ganho de Função , Síndromes da Apneia do Sono , Criança , Deficiências do Desenvolvimento , Humanos , Mutação/genética , Proteínas do Tecido Nervoso , Canais de Potássio de Domínios Poros em Tandem , Síndromes da Apneia do Sono/genética
3.
Genet Med ; 23(3): 498-507, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144682

RESUMO

PURPOSE: Exome sequencing often identifies pathogenic genetic variants in patients with undiagnosed diseases. Nevertheless, frequent findings of variants of uncertain significance necessitate additional efforts to establish causality before reaching a conclusive diagnosis. To provide comprehensive genomic testing to patients with undiagnosed disease, we established an Individualized Medicine Clinic, which offered clinical exome testing and included a Translational Omics Program (TOP) that provided variant curation, research activities, or research exome sequencing. METHODS: From 2012 to 2018, 1101 unselected patients with undiagnosed diseases received exome testing. Outcomes were reviewed to assess impact of the TOP and patient characteristics on diagnostic rates through descriptive and multivariate analyses. RESULTS: The overall diagnostic yield was 24.9% (274 of 1101 patients), with 174 (15.8% of 1101) diagnosed on the basis of clinical exome sequencing alone. Four hundred twenty-three patients with nondiagnostic or without access to clinical exome sequencing were evaluated by the TOP, with 100 (9% of 1101) patients receiving a diagnosis, accounting for 36.5% of the diagnostic yield. The identification of a genetic diagnosis was influenced by the age at time of testing and the disease phenotype of the patient. CONCLUSION: Integration of translational research activities into clinical practice of a tertiary medical center can significantly increase the diagnostic yield of patients with undiagnosed disease.


Assuntos
Exoma , Doenças não Diagnosticadas , Exoma/genética , Testes Genéticos , Humanos , Fenótipo , Pesquisa Translacional Biomédica , Sequenciamento do Exoma
4.
Ann Clin Transl Neurol ; 7(6): 1013-1028, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32519519

RESUMO

OBJECTIVE: We describe the clinical characteristics and genetic etiology of several new cases within the ACO2-related disease spectrum. Mitochondrial aconitase (ACO2) is a nuclear-encoded tricarboxylic acid cycle enzyme. Homozygous pathogenic missense variants in the ACO2 gene were initially associated with infantile degeneration of the cerebrum, cerebellum, and retina, resulting in profound intellectual and developmental disability and early death. Subsequent studies have identified a range of homozygous and compound heterozygous pathogenic missense, nonsense, frameshift, and splice-site ACO2 variants in patients with a spectrum of clinical manifestations and disease severities. METHODS: We describe a cohort of five novel patients with biallelic pathogenic variants in ACO2. We review the clinical histories of these patients as well as the molecular and functional characterization of the associated ACO2 variants and compare with those described previously in the literature. RESULTS: Two siblings with relatively mild symptoms presented with episodic ataxia, mild developmental delays, severe dysarthria, and behavioral abnormalities including hyperactivity and depressive symptoms with generalized anxiety. One patient presented with the classic form with cerebellar hypoplasia, ataxia, seizures, optic atrophy, and retinitis pigmentosa. Another unrelated patient presented with ataxia but developed severe progressive spastic quadriplegia. Another patient demonstrated a spinal muscular atrophy-like presentation with severe neonatal hypotonia, diminished reflexes, and poor respiratory drive, leading to ventilator dependence until death at the age of 9 months. INTERPRETATION: In this study, we highlight the importance of recognizing milder forms of the disorder, which may escape detection due to atypical disease presentation.


Assuntos
Aconitato Hidratase/genética , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/fisiopatologia , Adolescente , Adulto , Criança , Estudos de Coortes , Feminino , Humanos , Lactente , Masculino , Doenças do Sistema Nervoso/metabolismo , Linhagem , Fenótipo
5.
Am J Med Genet A ; 176(12): 2798-2802, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30345613

RESUMO

Wolf-Hirschhorn syndrome (WHS) is a microdeletion syndrome characterized by distinctive facial features consisting of "Greek warrior helmet" appearance, prenatal and postnatal growth deficiency, developmental disability, and seizures. This disorder is caused by heterozygous deletions on chromosome 4p16.3 often identified by cytogenetic techniques. Many groups have attempted to identify the critical region within this deletion to establish which genes are responsible for WHS. Herein, clinical whole exome sequencing (WES) was performed on a child with developmental delays, mild facial dysmorphisms, short stature, failure to thrive, and microcephaly, and revealed a de novo frameshift variant, c.1676_1679del (p.Arg559Tfs*38), in WHSC1 (NSD2). While WHSC1 falls within the WHS critical region, individuals with only disruption of this gene have only recently been described in the literature. Loss-of-function de novo variations in WHSC1 were identified in large developmental delay, autism, diagnostic, and congenital cardiac cohorts, as well as recent case reports, suggesting that de novo loss-of-function WHSC1 variants may be related to disease. These findings, along with our patient suggest that loss-of-function variation in WHSC1 may lead to a mild form of Wolf-Hirschhorn syndrome, and also may suggest that the developmental delays, facial dysmorphisms, and short stature seen in WHS may be due to disruption of WHSC1 gene.


Assuntos
Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Insuficiência de Crescimento/diagnóstico , Insuficiência de Crescimento/genética , Histona-Lisina N-Metiltransferase/genética , Mutação com Perda de Função , Proteínas Repressoras/genética , Pré-Escolar , Análise Citogenética , Feminino , Estudos de Associação Genética , Genômica/métodos , Humanos , Linhagem , Fenótipo , Sequenciamento do Exoma , Síndrome de Wolf-Hirschhorn/diagnóstico , Síndrome de Wolf-Hirschhorn/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...